Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Biomark Med ; 16(1): 41-50, 2022 01.
Article in English | MEDLINE | ID: covidwho-1523645

ABSTRACT

Viral diseases remain a significant global health threat, and therefore prioritization of limited healthcare resources is required to effectively manage dangerous viral disease outbreaks. In a pandemic of a newly emerged virus that is yet to be well understood, a noninvasive host-derived prognostic biomarker is invaluable for risk prediction. Red blood cell distribution width (RDW), an index of red blood cell size disorder (anisocytosis), is a potential predictive biomarker for severity of many diseases. In view of the need to prioritize resources during response to outbreaks, this review highlights the prospects and challenges of RDW as a prognostic biomarker for viral infections, with a focus on hepatitis and COVID-19, and provides an outlook to improve the prognostic performance of RDW for risk prediction in viral diseases.


Subject(s)
Erythrocyte Indices , Virus Diseases/diagnosis , Animals , Biomarkers/analysis , Biomarkers/blood , COVID-19/blood , COVID-19/diagnosis , Erythrocytes/cytology , Hepatitis/blood , Hepatitis/diagnosis , Humans , Prognosis , Virus Diseases/blood
2.
Eur Rev Med Pharmacol Sci ; 25(10): 3886-3897, 2021 May.
Article in English | MEDLINE | ID: covidwho-1264765

ABSTRACT

OBJECTIVE: Platelets, blood coagulation along with fibrinolysis are greatly involved in the pathophysiology of infectious diseases induced by bacteria, parasites and virus. This phenomenon is not surprising since both the innate immunity and the hemostatic systems are two ancestral mechanisms which closely cooperate favoring host's defense against foreign invaders. However, the excessive response of these systems may be dangerous for the host itself. MATERIALS AND METHODS: We searched and retrieved the articles, using the following electronic database: MedLine and Embase. We limited our search to articles published in English, but no restrictions in terms of article type, publication year, and geography were adopted. RESULTS: The hemostatic phenotype of the infectious diseases is variable depending on the points of attack of the different involved pathogens. Infectious diseases which show a prothrombotic phenotype are bacterial sepsis, SARS-CoV-2 and malaria. However, among the bacterial sepsis, Yersinia Pestis is characterized by a profibrinolytic behavior. On the contrary, the hemorrhagic fevers, due to Dengue and Ebola virus, mainly exploit the activation of fibrinolysis secondary to a huge endothelial damage which can release a large amount of t-PA in the early phase of the diseases. CONCLUSIONS: Blood coagulation and fibrinolysis are greatly activated based on the strategy of the different infectious agents which exploit the excess of response of both systems to achieve the greatest possible virulence.


Subject(s)
Blood Coagulation , COVID-19/pathology , Fibrinolysis , COVID-19/complications , COVID-19/virology , Endothelial Cells/cytology , Endothelial Cells/metabolism , Endothelial Cells/virology , Erythrocytes/cytology , Erythrocytes/metabolism , Erythrocytes/parasitology , Humans , Monocytes/cytology , Monocytes/metabolism , Monocytes/virology , SARS-CoV-2/isolation & purification , Thromboplastin/metabolism , Viruses/pathogenicity
3.
J Proteome Res ; 19(11): 4455-4469, 2020 11 06.
Article in English | MEDLINE | ID: covidwho-889124

ABSTRACT

The SARS-CoV-2 beta coronavirus is the etiological driver of COVID-19 disease, which is primarily characterized by shortness of breath, persistent dry cough, and fever. Because they transport oxygen, red blood cells (RBCs) may play a role in the severity of hypoxemia in COVID-19 patients. The present study combines state-of-the-art metabolomics, proteomics, and lipidomics approaches to investigate the impact of COVID-19 on RBCs from 23 healthy subjects and 29 molecularly diagnosed COVID-19 patients. RBCs from COVID-19 patients had increased levels of glycolytic intermediates, accompanied by oxidation and fragmentation of ankyrin, spectrin beta, and the N-terminal cytosolic domain of band 3 (AE1). Significantly altered lipid metabolism was also observed, in particular, short- and medium-chain saturated fatty acids, acyl-carnitines, and sphingolipids. Nonetheless, there were no alterations of clinical hematological parameters, such as RBC count, hematocrit, or mean corpuscular hemoglobin concentration, with only minor increases in mean corpuscular volume. Taken together, these results suggest a significant impact of SARS-CoV-2 infection on RBC structural membrane homeostasis at the protein and lipid levels. Increases in RBC glycolytic metabolites are consistent with a theoretically improved capacity of hemoglobin to off-load oxygen as a function of allosteric modulation by high-energy phosphate compounds, perhaps to counteract COVID-19-induced hypoxia. Conversely, because the N-terminus of AE1 stabilizes deoxyhemoglobin and finely tunes oxygen off-loading and metabolic rewiring toward the hexose monophosphate shunt, RBCs from COVID-19 patients may be less capable of responding to environmental variations in hemoglobin oxygen saturation/oxidant stress when traveling from the lungs to peripheral capillaries and vice versa.


Subject(s)
Coronavirus Infections , Erythrocytes , Membrane Lipids , Pandemics , Pneumonia, Viral , Betacoronavirus , COVID-19 , Coronavirus Infections/blood , Coronavirus Infections/pathology , Coronavirus Infections/physiopathology , Erythrocytes/chemistry , Erythrocytes/cytology , Erythrocytes/pathology , Humans , Lipidomics , Membrane Lipids/analysis , Membrane Lipids/chemistry , Membrane Lipids/metabolism , Membrane Proteins/analysis , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Metabolome/physiology , Models, Molecular , Pneumonia, Viral/blood , Pneumonia, Viral/pathology , Pneumonia, Viral/physiopathology , Proteome/analysis , Proteome/chemistry , Proteome/metabolism , SARS-CoV-2
4.
Transfus Apher Sci ; 59(5): 102941, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-745914

ABSTRACT

A shortage of blood during the pandemic outbreak of COVID-19 is a typical example in which the maintenance of a safe and adequate blood supply becomes difficult and highly demanding. So far, human RBCs have been produced in vitro using diverse sources: hematopoietic stem cells (SCs), embryonic SCs and induced pluripotent SCs. The existing, even safest core of conventional cellular bioproducts destined for transfusion have some shortcoming in respects to: donor -dependency variability in terms of hematological /immunological and process/ storage period issues. SCs-derived transfusable RBC bioproducts, as one blood group type for all, were highly complex to work out. Moreover, the strategies for their successful production are often dependent upon the right selection of starting source materials and the composition and the stability of the right expansion media and the strict compliance to GMP regulatory processes. In this mini-review we highlight some model studies, which showed that the efficiency and the functionality of RBCs that could be produced by the various types of SCs, in relation to the in-vitro culture procedures are such that they may, potentially, be used at an industrial level. However, all cultured products do not have an unlimited life due to the critical metabolic pathways or the metabolites produced. New bioreactors are needed to remove these shortcomings and the development of a new mouse model is required. Modern clinical trials based on the employment of regenerative medicine approaches in combination with novel large-scale bioengineering tools, could overcome the current obstacles in artificial RBC substitution, possibly allowing an efficient RBC industrial production.


Subject(s)
Blood Transfusion , Erythrocytes/cytology , Hematopoietic Stem Cells/cytology , Cell Line , Clinical Trials as Topic , Humans
5.
Eur Rev Med Pharmacol Sci ; 24(16): 8585-8591, 2020 08.
Article in English | MEDLINE | ID: covidwho-745634

ABSTRACT

Some surface proteins of the newly identified severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can bind to the hemoglobin molecule of an erythrocyte, which leads to the destruction of the structure of the heme and the release of harmful iron ions to the bloodstream. The degradation of hemoglobin results in the impairment of oxygen-carrying capacity of the blood, and the accumulation of free iron enhances the production of reactive oxygen species. Both events can lead to the development of oxidative stress. In this case, oxidative damage to the lungs leads then to the injuries of all other tissues and organs. The use of uridine, which preserves the structure of pulmonary alveoli and the air-blood barrier of the lungs in the course of experimental severe hypoxia, and dihydroquercetin, an effective free radical scavenger, is promising for the treatment of COVID-19. These drugs can also be used for the recovery of the body after the severe disease.


Subject(s)
Coronavirus Infections/pathology , Oxidative Stress , Pneumonia, Viral/pathology , Betacoronavirus , COVID-19 , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Cytokines/metabolism , Erythrocytes/cytology , Erythrocytes/metabolism , Erythrocytes/virology , Free Radical Scavengers/pharmacology , Free Radical Scavengers/therapeutic use , Hemoglobins/metabolism , Humans , Oxidative Stress/drug effects , Pandemics , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , Pulmonary Alveoli/drug effects , Pulmonary Alveoli/physiology , Quercetin/analogs & derivatives , Quercetin/pharmacology , Quercetin/therapeutic use , Reactive Oxygen Species/metabolism , SARS-CoV-2 , Uridine/pharmacology , Uridine/therapeutic use
6.
Med Hypotheses ; 144: 110227, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-739952

ABSTRACT

As of now, therapeutic strategies for the novel coronavirus (SARS-CoV-2) are limited and much focus has been placed on social distancing techniques to "flatten the curve". Initial treatment efforts including ventilation and hydroxychloroquine garnered significant controversy and today, SARS-CoV-2 outbreaks are still occurring throughout the world. Needless to say, new therapeutic strategies are needed to combat this unprecedented pandemic. Nature Reviews Immunology recently published an article hypothesizing the pathogenesis of TAM (Tyro3, Axl, and Mer) receptor signaling in COVID-19. In it they expressed that hypercoagulation and immune hyper-reaction could occur secondary to decreased Protein S (PROS1). And hypoxia has been recently discovered to significantly decrease expression of PROS1. Regarding the cause of hypoxia in COVID-19; NIH funded research utilizing state-of-the-art topologies has recently demonstrated significant metabolomic, proteomic, and lipidomic structural aberrations in hemoglobin (Hb) secondary to infection with SARS-CoV-2. In this setting, Hb may be incapacitated and unable to respond to environmental variations, compromising RBCs and oxygen delivery to tissues. The use of red blood cell exchange would target hypoxia at its source; representing a Gemini of therapeutic opportunities.


Subject(s)
COVID-19/blood , COVID-19/therapy , Erythrocyte Transfusion/methods , Erythrocytes/cytology , Disease Outbreaks , Hemoglobins/metabolism , Humans , Hypoxia/metabolism , Immune System , Oxygen/therapeutic use , Protein S/metabolism , Pulmonary Embolism/metabolism , Signal Transduction , Thrombosis/metabolism , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL